Akar akar persaan kuadrat
Ada tiga metode dalam mencari akar-akar persamaan kuadrat ax^2 + bx + c = 0 yaitu:
Pemfaktoran
Metode ini mudah digunakan jika akar-akarnya merupakan bilangan rasional. Berikut ini tabel model persamaan kuadrat (PK) dan berbagai cara pemfaktorannya:
persamaan kuadrat dengan pemfaktoran
Saat menggunakan metode ini, pertama harus mengetahui terlebih dahulu model PK yang akan diselesaikan. Jika model PK sudah diketahui, maka pemfaktoran bisa dilakukan dalam bentuk sesuai dengan yang ada di kolom tabel di atas. Untuk mendapatkan nilai p, q, m dan n kalian harus memahami cara memfaktorkan suatu bilangan.
Melengkapkan Kuadrat Sempurna
Metode melengkapkan kuadrat sempurna akan mudah digunakan jika koefisien a dibuat agar bernilai 1. PK dalam bentuk ax^2 + bx + c = 0 diubah bentuk menjadi persamaan:
(x + p)^2 = q
Dengan p dan q adalah konstanta serta x adalah variabel. Nilai dari konstanta p dan q dari persamaan x^2 + bx + c = 0 didapatkan dengan cara:
p = \frac{1}{2}b
q = (\frac{1}{2}b)^2 - c
Perubahan tersebut dapat dibuktikan sebagai berikut :
(x + p)^2 = q
(x + \frac{1}{2}b)^2 = (\frac{1}{2}b)^2 - c
x^2 + bx + (\frac{1}{2}b)^2 = (\frac{1}{2}b)^2 - c
x^2 + bx + c = 0
Rumus abc
Metode rumus abc ini bisa digunakan jika pemfaktoran dan melengkapkan kuadrat sempurna tidak bisa dilakukan. Nilai dari akar-akar persamaan kuadrat ax^2 + bx + c = 0 didapatkan dari rumus abc berikut:
x_{1,2} = \frac{- b \pm \sqrt{b^2 - 4ac}}{2a}
Sehingga, akar-akarnya adalah
x_1 = \frac{- b + \sqrt{b^2 - 4ac}}{2a}
x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}
Jenis Akar-akar Persamaan Kuadrat
Jenis akar-akar persamaan kuadrat ax^2 + bx + c = 0 dapat ditentukan dengan mengetahui nilai “Diskriminan” (D). Nilai diskriminan terdapat dalam rumus abc sebagai :
D = b^2 - 4ac
Sehingga rumus abc menjadi:
x_{1,2} = \frac{-b \pm sqrt{D}}{2a}
Tanda akar diskriminan ( \sqrt{D} ) dalam rumus abc menentukan jenis dari akar-akar persaaman kuadrat, apakah bilangan real atau tidak real. Sehingga jenis akar-akar PK ax^2 + bx + c = 0 adalah:
Jika D < 0 maka akar-akarnya tidak real.
Jika D > 0 maka akar-akarnya real (x_1, x_2 \in R) dan berbeda (x_1 \neq x_2).
Jika D = 0 maka akar-akarnya real (x_1, x_2 \in R) dan sama atau kembar (x_1 = x_2).
Jumlah dan Hasil Kali Akar-akar
Penjumlahan dan perkalian akar-akar persamaan ax^2 + bx + c dapat dilakukan tanpa harus mengetahui nilai dari akar-akarnya. Jumlah akar-akar dapat diperoleh dengan :
x_1 + x_2 = \frac{-b + \sqrt{b^2 - 4ac}}{2a} + \frac{-b - \sqrt{b^2 - 4ac}}{2a}
© Copyright 2019 StudioBelajar.com
0 komentar: